Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.624
Filtrar
1.
Synth Syst Biotechnol ; 9(2): 359-368, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38559426

RESUMEN

Acarbose is a potent glycosidase inhibitor widely used in the clinical treatment of type 2 diabetes mellitus (T2DM). Various acarbose analogs have been identified while exploring compounds with improved pharmacological properties. In this study, we found that AcbE from Actinoplanes sp. SE50/110 catalyzes the production of acarbose analogs that exhibit significantly improved inhibitory activity towards α-amylase than acarbose. Recombinant AcbE mainly catalyzed the formation of two new compounds, namely acarstatins A and B, using acarbose as substrate. Using high-resolution mass spectrometry, nuclear magnetic resonance, and glycosidase hydrolysis, we elucidated their chemical structures as O-α-d-maltosyl-(1 â†’ 4)-acarbose and O-α-d-maltotriosyl-(1 â†’ 4)-acarbose, respectively. Acarstatins A and B exhibited 1584- and 1478-fold greater inhibitory activity towards human salivary α-amylase than acarbose. Furthermore, both acarstatins A and B exhibited complete resistance to microbiome-derived acarbose kinase 1-mediated phosphorylation and partial resistance to acarbose-preferred glucosidase-mediated hydrolysis. Therefore, acarstatins A and B have great potential as candidate therapeutic agents for T2DM.

2.
Front Endocrinol (Lausanne) ; 15: 1329954, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562415

RESUMEN

Background: The causal association between gut microbiota (GM) and the development of diabetic nephropathy (DN) remains uncertain. We sought to explore this potential association using two-sample Mendelian randomization (MR) analysis. Methods: Genome-wide association study (GWAS) data for GM were obtained from the MiBioGen consortium. GWAS data for DN and related phenotypes were collected from the FinngenR9 and CKDGen databases. The inverse variance weighted (IVW) model was used as the primary analysis model, supplemented by various sensitivity analyses. Heterogeneity was assessed using Cochran's Q test, while horizontal pleiotropy was evaluated through MR-Egger regression and the MR-PRESSO global test. Reverse MR analysis was conducted to identify any reverse causal effects. Results: Our analysis identified twenty-five bacterial taxa that have a causal association with DN and its related phenotypes (p < 0.05). Among them, only the g_Eubacterium_coprostanoligenes_group showed a significant causal association with type 1 DN (p < Bonferroni-adjusted p-value). Our findings remained consistent regardless of the analytical approach used, with all methods indicating the same direction of effect. No evidence of heterogeneity or horizontal pleiotropy was observed. Reverse MR analysis did not reveal any causal associations. Conclusions: This study established a causal association between specific GM and DN. Our findings contribute to current understanding of the role of GM in the development of DN, offering potential insights for the prevention and treatment strategies for this condition.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Microbioma Gastrointestinal , Humanos , Nefropatías Diabéticas/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Causalidad
3.
Int J Nanomedicine ; 19: 3071-3086, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562611

RESUMEN

Introduction: The high mortality rate of malignant ovarian cancer is attributed to the absence of effective early diagnosis methods. The LHRH receptor is specifically overexpressed in most ovarian cancers, and the integrin αvß3 receptor is also overexpressed on the surface of ovarian cancer cells. In this study, we designed LHRH analogues (LHRHa)/RGD co-modified paclitaxel liposomes (LHRHa-RGD-LP-PTX) to target LHRH receptor-positive ovarian cancers more effectively and enhance the anti-ovarian cancer effects. Methods: LHRHa-RGD-LP-PTX liposomes were prepared using the thin film hydration method. The morphology, physicochemical properties, cellular uptake, and cell viability were assessed. Additionally, the cellular uptake mechanism of the modified liposomes was investigated using various endocytic inhibitors. The inhibitory effect of the formulations on tumor spheroids was observed under a microscope. The co-localization with lysosomes was visualized using confocal laser scanning microscopy (CLSM), and the in vivo tumor-targeting ability of the formulations was assessed using the IVIS fluorescent imaging system. Finally, the in vivo anti-tumor efficacy of the formulations was evaluated in the armpits of BALB/c nude mice. Results: The results indicated that LHRHa-RGD-LP-PTX significantly enhanced cellular uptake in A2780 cells, increased cytotoxicity, and hand a more potent inhibitory effect on tumor spheroids of A2780 cells. It also showed enhanced co-localization with endosomes or lysosome in A2780 cells, improved tumor-targeting capability, and demonstrated an enhanced anti-tumor effect in LHRHR-positive ovarian cancers. Conclusion: The designed LHRHa-RGD-LP-PTX liposomes significantly enhanced the tumor-targeting ability and therapeutic efficacy for LHRH receptor-positive ovarian cancers.


Asunto(s)
Neoplasias Ováricas , Animales , Ratones , Humanos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Liposomas/química , Receptores LHRH , Integrina alfaVbeta3 , Línea Celular Tumoral , Ratones Desnudos , Paclitaxel/uso terapéutico , Oligopéptidos/química
4.
Front Psychiatry ; 15: 1336233, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38563030

RESUMEN

Background: People living with HIV (PLWH) exhibits an increased susceptibility to anxiety disorders, concomitant with heightened vulnerability to aberrant immune activation and inflammatory responses, and endocrine dysfunction. There exists a dearth of scholarly investigations pertaining to the neurological, immune, and endocrine dimensions of HIV-associated anxiety disorders. Method: This study aimed to compare a group of 16 individuals diagnosed with HIV-associated anxiety disorders (HIV ANXs) according to the Diagnostic and statistical manual of mental disorders (5th ed.), with a HIV individual control group (HIV control) of 49 PLWH without mental disorders. Muti-modal magnetic resonance was employed to assess the brain function and structure of both groups. Seed-based functional connectivity (FC) was used to assess the regional intrinsic brain activity and the influence of regional disturbances on FC with other brain regions. Peripheral blood cytokines and chemokines concentrations were measured using liquid chip and ELISA. Results: Amplitude of low-frequency fluctuations in the right inferior temporal gyrus (ITG) was increased. There is a significant decreased regional homogeneity in HIV ANXs in the right superior occipital gyrus (SOG). The right ITG and the right SOG were separately set as the seed brain region of interest (ROI 1 and ROI 2) to be analyzed the FC. FC decreased in HIV ANXs between ROI1 and the right middle occipital gyrus, the right SOG, FC between ROI2 and left ITG increased in HIV ANXs. No significant structural difference was found between two groups. Pro-inflammatory chemokines showed higher levels in the HIV ANXs. Pro-inflammatory cytokines, neurotrophic factors, and endocrine factors were significantly correlated with alterations in brain function. Conclusion: This study suggests that patients with HIV-associated anxiety disorders may exhibit abnormalities in neurologic, immune, and endocrine functioning. Consequently, it is imperative to implement additional screening and intervention measures for anxiety disorders among PLWH.

5.
Heliyon ; 10(7): e28530, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38571639

RESUMEN

We reported a late-pregnancy woman with pre-XDR PTB who had not received regular anti-tuberculosis treatment prior to delivery. Despite this, she successfully delivered a premature baby who exhibited normal growth and development, and subsequently completed her anti-tuberculosis treatment. This report suggests that delayed treatment for pre-XDR TB during late pregnancy does not necessarily increase the risk of treatment failure for the mother or the risk of neonatal tuberculosis.

6.
J Inflamm Res ; 17: 2119-2135, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38595338

RESUMEN

Purpose: Immune microenvironment plays an important role in aortic dissection (AD). Therefore, novel immune biomarkers may facilitate AD prevention, diagnosis, and treatment. This study aimed at mining key immune-related genes and relevant mechanisms involved in AD pathogenesis. Patients and Methods: Key immune cells in AD were identified by ssGESA algorithm. Next, genes associated with key immune cells were screened by weighted gene coexpression network analysis (WGCNA). Then hub immune genes were picked from protein-protein interaction network of overlapped genes from differential expression and WGCNA analyses by cytohubba plug-in. Their diagnostic potential was evaluated in two independent cohorts from GEO database. In addition, the expressions of hub immune genes were determined by quantitative RT-PCR, immunohistochemistry, and Western blotting in dissected and normal aortic tissues. Results: Activated B cells, CD56dim natural killer cells, eosinophils, gamma delta T cells, immature B cells, natural killer cells and type 17 T helper cells were identified as key immune cells in AD. Thereafter, a gene module significantly correlated with key immune cells were found by WGCNA method. Subsequently, KDR, IGF1, NOS3, PECAM1, GAPDH, FLT1, DLL4, CDH5, VWF, and TEK were identified as hub immune cell related genes by PPI network analysis, which may be potential diagnostic markers for AD, as evidenced by ROC curves. Moreover, the decreased expression of VWF in AD was validated at both mRNA and protein levels, and its expression was significantly positive correlated with the marker of smooth muscle cells, ACTA2, in AD. Further immunofluorescent results showed that VWF was colocalized with ACTA2 in aortic tissues. Conclusion: We identified key immune cells and hub immune cell-related genes involved in AD. Moreover, we found that VWF was co-expressed with the smooth muscle cell marker ACTA2, indicating the important role of VWF in smooth muscle cell loss in AD pathogenesis.

7.
Front Neurosci ; 18: 1308627, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38595969

RESUMEN

Background: The 2021 World Health Organization Classification of Central Nervous System Tumors updates glioma subtyping and grading system, and incorporates EGFR amplification (Amp) as one of diagnostic markers for glioblastoma (GBM). Purpose: This study aimed to describe the frequency, clinical value and molecular correlation of EGFR Amp in diffuse gliomas based on the latest classification. Methods: We reviewed glioma patients between 2011 and 2022 at our hospital, and included 187 adult glioma patients with available tumor tissue for detection of EGFR Amp and other 59 molecular markers of interest. Clinical, radiological and pathological data was analyzed based on the status of EGFR Amp in different glioma subtypes. Results: 163 gliomas were classified as adult-type diffuse gliomas, and the number of astrocytoma, oligodendroglioma and GBM was 41, 46, and 76. EGFR Amp was more common in IDH-wildtype diffuse gliomas (66.0%) and GBM (85.5%) than IDH-mutant diffuse gliomas (32.2%) and its subtypes (astrocytoma, 29.3%; oligodendroglioma, 34.8%). EGFR Amp did not stratify overall survival (OS) in IDH-mutant diffuse gliomas and astrocytoma, while was significantly associated with poorer OS in IDH-wildtype diffuse gliomas, histologic grade 2 and 3 IDH-wildtype diffuse astrocytic gliomas and GBM. Conclusion: Our study validated EGFR Amp as a diagnostic marker for GBM and still a useful predictor for shortened OS in this group.

8.
Heliyon ; 10(7): e28162, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38596032

RESUMEN

Brain metastasis (BMs) in small cell lung cancer (SCLC) has a very poor prognosis. This study combined WGCNA with the mfuzz algorithm to identify potential biomarkers in the peripheral blood of patients with BMs. By comparing the significantly differentially expressed genes present in BMs samples, we identified ADCY4 as a target for further study. Expression of ADCY4 was used to cluster mfuzz expression pattern, and 28 hub genes for functional enrichment. PPI network analysis were obtained by comparing with differentially expressed genes in BMs. GABRE, NFE4 and LMOD2 are highly expressed in patients with BMs and have a good diagnostic effect. Immunoinfiltration analysis showed that SCLC patients with BMs may be associated with memory B cells, Tregs, NK cell activation, macrophage M0 and dendritic cell activation. prophytic was used to investigate the ADCY4-mediated anti-tumor drug response. In conclusion, ADCY4 can be used as a promising candidate biomarker for predicting BMs, molecular and immune features in SCLC. PCR showed that ADCY4 expression was increased in NCI-H209 and NCI-H526 SCLC cell lines. In vitro experiments confirmed that the expression of ADCY4 was significantly decreased after anti-PD1 antibody treatment, while the expression of energy metabolism factors were significantly different. This study reveals a potential mechanism by which ADCY4 mediates poor prognosis through energy metabolism -related pathways in SCLC.

9.
Biomed Pharmacother ; 174: 116570, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38599063

RESUMEN

Copper is an essential trace element in the human body that is extensively distributed throughout various tissues. The appropriate level of copper is crucial to maintaining the life activities of the human body, and the excess and deficiency of copper can lead to various diseases. The copper levels in the human body are regulated by copper homeostasis, which maintains appropriate levels of copper in tissues and cells by controlling its absorption, transport, and storage. Cuproptosis is a distinct form of cell death induced by the excessive accumulation of intracellular copper. Copper homeostasis and cuproptosis has recently elicited increased attention in the realm of human health. Cuproptosis has emerged as a promising avenue for cancer therapy. Studies concerning osteoarticular diseases have elucidated the intricate interplay among copper homeostasis, cuproptosis, and the onset of osteoarticular diseases. Copper dysregulation and cuproptosis cause abnormal bone and cartilage metabolism, affecting related cells. This phenomenon assumes a critical role in the pathophysiological processes underpinning various osteoarticular diseases, with implications for inflammatory and immune responses. While early Cu-modulating agents have shown promise in clinical settings, additional research and advancements are warranted to enhance their efficacy. In this review, we summarize the effects and potential mechanisms of copper homeostasis and cuproptosis on bone and cartilage, as well as their regulatory roles in the pathological mechanism of osteoarticular diseases (e.g., osteosarcoma (OS), osteoarthritis (OA), and rheumatoid arthritis (RA)). We also discuss the clinical-application prospects of copper-targeting strategy, which may provide new ideas for the diagnosis and treatment of osteoarticular diseases.

10.
Angew Chem Int Ed Engl ; : e202404213, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600431

RESUMEN

Electrocatalytic carbon dioxide/carbon monoxide reduction reaction (CO(2)RR) has emerged as a prospective and appealing strategy to realize carbon neutrality for manufacturing sustainable chemical products. Developing highly active electrocatalysts and stable devices has been demonstrated as effective approach to enhancing the conversion efficiency of CO(2)RR. In order to rationally design electrocatalysts and devices, a comprehensive understanding of the intrinsic structure evolution within catalysts and micro-environment change around electrode interface, particularly under operation conditions, is indispensable. Synchrotron radiation has been recognized as a versatile characterization platform, garnering widespread attention owing to its high brightness, elevated flux, excellent directivity, strong polarization and exceptional stability. This review systematically introduces the applications of synchrotron radiation technologies classified by radiation sources with varying wavelengths in CO(2)RR. By virtue of in situ/operando synchrotron analytical techniques, we also summarize relevant dynamic evolution processes from electronic structure, atomic configuration, molecular adsorption, crystal lattice and devices, spanning scales from the angstrom to the micrometer. The merits and limitations of diverse synchrotron characterization techniques are summarized, and their applicable scenarios in CO(2)RR are further presented. On the basis of the state-of-the-art fourth-generation synchrotron facilities, a perspective for further deeper understanding of the CO(2)RR process using synchrotron analytical techniques is proposed.

11.
Adv Sci (Weinh) ; : e2304908, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600652

RESUMEN

Single-atom alloys (SAAs) have gained increasing prominence in the field of selective hydrogenation reactions due to their uniform distribution of active sites and the unique host-guest metal interactions. Herein, 15 SAAs are constructed to comprehensively elucidate the relationship between host-guest metal interaction and catalytic performance in the selective hydrogenation of 4-nitrostyrene (4-NS) by density functional theory (DFT) calculations. The results demonstrate that the SAAs with strong host-guest metal interactions exhibit a preference for N─O bond cleavage, and the reaction energy barrier of the hydrogenation process is primarily influenced by the host metal. Among them, Ir1Ni SAA stands out as the prime catalyst candidate, showcasing exceptional activity and selectivity. Furthermore, the Ir1Ni SAA is subsequently prepared through precise synthesis techniques and evaluated in the selective hydrogenation of 4-NS to 4-aminostyrene (4-AS). As anticipated, the Ir1Ni SAA demonstrates extraordinary catalytic performance (yield > 96%). In situ FT-IR experiments and DFT calculations further confirmed that the unique host-guest metal interaction at the Ir-Ni interface site of Ir1Ni SAA endows it with excellent 4-NS selective hydrogenation ability. This work provides valuable insights into enhancing the performance of SAAs catalysts in selective hydrogenation reactions by modulating the host-guest metal interactions.

12.
Public Health Nurs ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602094

RESUMEN

OBJECTIVE: To analyze the co-existing patterns of health-related behaviors among children and adolescents at different education stages and the association with obesity. DESIGN: Cross-sectional study. SAMPLE: A total of 5651 primary and secondary school students were drawn from the National Student Physical Health Survey in 2014 with an average age of 13.53 ± 2.87 years. MEASUREMENTS: Physical measurements and questionnaires were completed, which concluded height, weight, and health-related behaviors (sleep, physical activity, dietary, and screen behavior et al.). Latent profile analysis (LPA) was conducted using Mplus 8.3 and SPSS 26.0 was used for other statistical analysis. RESULTS: Three latent classes of health-related behaviors were fitted for each of the education stages. After adjustment for age, gender, and region, the high-screen behavior group were 2.217 (95%CI = 1.030-4.772, p = .042) times more likely to be obesity than the health-behavior group in primary school, and the poor-diet group and poor-diet and high-screen behavior group were 2.101 (95%CI = 1.396-3.396, p < .001) and 1.788 (95%CI = 1.003-3.190, p = .049) times more likely to be overweight than the health-behavior group in junior middle school respectively. CONCLUSION: Obesity is mainly influenced by screen behavior and dietary patterns among children and adolescents. Health-related behavior patterns should be accurately identified and comprehensive joint interventions should be carried out to prevent obesity.

13.
Bull Entomol Res ; : 1-12, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602247

RESUMEN

Mythimna separata (Lepidoptera: Noctuidae) is an omnivorous pest that poses a great threat to food security. Insect antimicrobial peptides (AMPs) are small peptides that are important effector molecules of innate immunity. Here, we investigated the role of the AMP cecropin B in the growth, development, and immunity of M. separata. The gene encoding M. separata cecropin B (MscecropinB) was cloned. The expression of MscecropinB was determined in different developmental stages and tissues of M. separata. It was highest in the prepupal stage, followed by the pupal stage. Among larval stages, the highest expression was observed in the fourth instar. Tissue expression analysis of fourth instar larvae showed that MscecropinB was highly expressed in the fat body and haemolymph. An increase in population density led to upregulation of MscecropinB expression. MscecropinB expression was also upregulated by the infection of third and fourth instar M. separata with Beauveria bassiana or Bacillus thuringiensis (Bt). RNA interference (RNAi) targeting MscecropinB inhibited the emergence rate and fecundity of M. separata, and resulted in an increased sensitivity to B. bassiana and Bt. The mortality of M. separata larvae was significantly higher in pathogen plus RNAi-treated M. separata than in controls treated with pathogens only. Our findings indicate that MscecropinB functions in the eclosion and fecundity of M. separata and plays an important role in resistance to infection by B. bassiana and Bt.

14.
Mod Pathol ; : 100486, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38588882

RESUMEN

The role of Artificial intelligence (AI) in pathology is one that offers many exciting new possibilities for improving patient care. This study contributes to this development by identifying the viability of AICyte Assistive System for cervical screening, and to investigate the utility of the system in assisting with workflow and diagnostic capability. In this study, a novel scanner was developed using a Ruiqian WSI-2400, trademarked AICyte Assistive system, to create AI-generated gallery of the most diagnostically relevant images, objects of interest (OOI), and provide categorical assessment, according to Bethesda category, for cervical ThinPrep Pap slides. For validation purposes, two pathologists reviewed OOIs from 32,451 cases of ThinPrep Paps independently, and their interpretations were correlated with the original ThinPrep interpretations (OTPI). The analysis was focused on the comparison of reporting rates, correlation between cytological results and histological follow-up findings, and the assessment of independent AICyte screening utility. Pathologists using the AICyte system had a mean reading time of 55.14 seconds for the first 3,000 cases trending down to 12.90 seconds in the last 6,000 cases. Overall average reading time was 22.23 seconds per case as compared to a manual reading time approximation of 180 seconds. Usage of AICyte compared to OTPI had similar sensitivity (97.89% vs 97.89%) and a statistically significant increase in specificity (16.19% vs 6.77%). When AICyte was run alone at a 50% negative cut-off value, it was able to read slides with a sensitivity of 99.30% and specificity of 9.87%. When AICyte was run independently at this cut-off value, no sole case of HSIL/SCC squamous lesion was missed. AICyte can provide a potential tool to help pathologists in both diagnostic capability and efficiency, which remained reliable as compared to baseline standard. Also unique for AICyte is the development of a negative cutoff value for which AICyte can categorize cases as "not needed for review" to triage cases and lower pathologist workload. This is the largest case number study that pathologists reviewed OOI with AI assistive system. The study demonstrates that AI assistive system can be broadly applied for cervical cancer screening.

15.
Nanoscale ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38591110

RESUMEN

Tumor recurrence after surgical resection remains a significant challenge in breast cancer treatment. Immune checkpoint blockade therapy, as a promising alternative therapy, faces limitations in combating tumor recurrence due to the low immune response rate. In this study, we developed an implantable photo-responsive self-healing hydrogel loaded with MoS2 nanosheets and the immunoadjuvant R837 (PVA-MoS2-R837, PMR hydrogel) for in situ generation of tumor-associated antigens at the post-surgical site of the primary tumor, enabling sustained and effective activation of the immune response. This PMR hydrogel exhibited potential for near-infrared (NIR) light response, tissue adhesion, self-healing, and sustained adjuvant release. When implanted at the site after tumor resection, NIR irradiation triggered a photothermal effect, resulting in the ablation of residual cancer cells. The in situ-generated tumor-associated antigens promoted dendritic cell (DC) maturation. In a mouse model, PMR hydrogel-mediated photothermal therapy combined with immune checkpoint blockade effectively inhibited the recurrence of resected tumors, providing new insights for combating post-resection breast cancer recurrence.

16.
Eur J Pharmacol ; 972: 176557, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38574839

RESUMEN

Cerebral ischemia-reperfusion injury (CIRI) can induce massive death of ischemic penumbra neurons via oxygen burst, exacerbating brain damage. Parthanatos is a form of caspase-independent cell death involving excessive activation of PARP-1, closely associated with intense oxidative stress following CIRI. 4'-O-methylbavachalcone (MeBavaC), an isoprenylated chalcone component in Fructus Psoraleae, has potential neuroprotective effects. This study primarily investigates whether MeBavaC can act on SIRT3 to alleviate parthanatos of ischemic penumbra neurons induced by CIRI. MeBavaC was oral gavaged to the middle cerebral artery occlusion-reperfusion (MCAO/R) rats after occlusion. The effects of MeBavaC on cerebral injury were detected by the neurological deficit score and cerebral infarct volume. In vitro, PC-12 cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R), and assessed cell viability and cell injury. Also, the levels of ROS, mitochondrial membrane potential (MMP), and intracellular Ca2+ levels were detected to reflect mitochondrial function. We conducted western blotting analyses of proteins involved in parthanatos and related signaling pathways. Finally, the exact mechanism between the neuroprotection of MeBavaC and parthanatos was explored. Our results indicate that MeBavaC reduces the cerebral infarct volume and neurological deficit scores in MCAO/R rats, and inhibits the decreased viability of PC-12 cells induced by OGD/R. MeBavaC also downregulates the expression of parthanatos-related death proteins PARP-1, PAR, and AIF. However, this inhibitory effect is weakened after the use of a SIRT3 inhibitor. In conclusion, the protective effect of MeBavaC against CIRI may be achieved by inhibiting parthanatos of ischemic penumbra neurons through the SIRT3-PARP-1 axis.

17.
Nat Commun ; 15(1): 2974, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582895

RESUMEN

Linear ubiquitination catalyzed by HOIL-1-interacting protein (HOIP), the key component of the linear ubiquitination assembly complex, plays fundamental roles in tissue homeostasis by executing domain-specific regulatory functions. However, a proteome-wide analysis of the domain-specific interactome of HOIP across tissues is lacking. Here, we present a comprehensive mass spectrometry-based interactome profiling of four HOIP domains in nine mouse tissues. The interaction dataset provides a high-quality HOIP interactome resource with an average of approximately 90 interactors for each bait per tissue. HOIP tissue interactome presents a systematic understanding of linear ubiquitination functions in each tissue and also shows associations of tissue functions to genetic diseases. HOIP domain interactome characterizes a set of previously undefined linear ubiquitinated substrates and elucidates the cross-talk among HOIP domains in physiological and pathological processes. Moreover, we show that linear ubiquitination of Integrin-linked protein kinase (ILK) decreases focal adhesion formation and promotes the detachment of Shigella flexneri-infected cells. Meanwhile, Hoip deficiency decreases the linear ubiquitination of Smad ubiquitination regulatory factor 1 (SMURF1) and enhances its E3 activity, finally causing a reduced bone mass phenotype in mice. Overall, our work expands the knowledge of HOIP-interacting proteins and provides a platform for further discovery of linear ubiquitination functions in tissue homeostasis.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina , Animales , Ratones , Homeostasis , FN-kappa B/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
18.
Zool Res ; 45(3): 468-477, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38583938

RESUMEN

Iron-sulfur clusters are essential cofactors for proteins involved in various biological processes, such as electron transport, biosynthetic reactions, DNA repair, and gene expression regulation. Iron-sulfur cluster assembly protein IscA1 (or MagR) is found within the mitochondria of most eukaryotes. Magnetoreceptor (MagR) is a highly conserved A-type iron and iron-sulfur cluster-binding protein, characterized by two distinct types of iron-sulfur clusters, [2Fe-2S] and [3Fe-4S], each conferring unique magnetic properties. MagR forms a rod-like polymer structure in complex with photoreceptive cryptochrome (Cry) and serves as a putative magnetoreceptor for retrieving geomagnetic information in animal navigation. Although the N-terminal sequences of MagR vary among species, their specific function remains unknown. In the present study, we found that the N-terminal sequences of pigeon MagR, previously thought to serve as a mitochondrial targeting signal (MTS), were not cleaved following mitochondrial entry but instead modulated the efficiency with which iron-sulfur clusters and irons are bound. Moreover, the N-terminal region of MagR was required for the formation of a stable MagR/Cry complex. Thus, the N-terminal sequences in pigeon MagR fulfil more important functional roles than just mitochondrial targeting. These results further extend our understanding of the function of MagR and provide new insights into the origin of magnetoreception from an evolutionary perspective.


Asunto(s)
Proteínas Hierro-Azufre , Animales , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Hierro/metabolismo , Azufre/metabolismo
19.
Ecol Evol ; 14(4): e11225, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38584774

RESUMEN

A new species of Papaveraceae, Corydalis sunhangii, in the section Trachycarpae, is described and illustrated from Nyingchi City, Xizang, China. The new species has some resemblance to Corydalis kingdonis, but differs by radical leaves prominent, usually several, blade tripinnate (vs. insignificant, few, blade bi- to triternate); cauline leaf usually one, much smaller than radical leaves, usually situated in lower half of stem (vs. usually two, larger than radical leaves, concentrated in upper third of stem); racemes densely 13-35-flowered (vs. rather lax, 4-11-flowered); claw of lower petal shallowly saccate (vs. very prominently and deeply saccate); capsule oblong, with raised lines of dense papillae (vs. broadly obovoid, smooth). Phylogenetic analysis, based on 68 protein-coding plastid genes of 49 samples, shows that C. sunhangii is not closely related to any hitherto described species, which is consistent with our morphological analysis.

20.
ACS Omega ; 9(13): 14977-14984, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38585067

RESUMEN

A pressure core sampler (PCS) is considered an effective tool to retrieve marine gas hydrate cores from hydrate-bearing sediments. However, according to the sampling application statistics, the success rate of pressure coring changed from 30% to 85% in different drilling wells. Such severe fluctuation will cause huge uncertainty in the practical application of technology and economic benefits. Herein, we present a new PCS designed to improve pressure-retaining reliability. The work principle, design and calculations, and structure composition were described. Through the laboratory tests and drilling experiments, the maximum holding pressure in the pressure chamber was 32.1 MPa, and the pressure loss rates of holding pressure after 2 h changed from 1.96% to 2.46%. The maximum temperature-rising value in the pressure chamber was 0.96 °C under a temperature of 23.5 °C in 2 h. Furthermore, the success rate of the pressure core reached 87.5% and the core recovery was not less than 80%, which were verified by 8 pressure core runs in three different offshore wells. Therefore, we conclude that this new and improved PCS has great application value in gas hydrate exploration that seeks to recover more accurate cores in situ, especially in the silt and sand layers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...